
The Unreasonable Power of the Sum-Check

Protocol

When designing an efficient interactive proof system, there is only one ham-
mer you need to have in your toolbox: the sum-check protocol of Lund, Fortnow,
Karloff, and Nisan. The goal of this blog post is to describe this hammer and
give a sense of why it is so useful.

This entire post will be framed in the context of interactive proofs. This
means that the goal is for a verifier V to offload an expensive computation to
an untrusted prover P , while achieving work-saving for the verifier. We want
the verifier to run in time linear in the input size, while keeping the proof short
(logarithmic size) and the prover efficient.

Since this post is appearing on the ZKProof blog, you may wonder why there
is nothing said about zero-knowledge. The answer is that one can combine the
ideas described in this post with cryptographic commitments to get state of the
art zk-SNARKs. But that will be the subject of a future post.

Roadmap for this post. After describing the sum-check protocol, I will
demonstrate its remarkable power through several applications. First, I will give
simple interactive proofs (IPs) for matrix multiplication and counting triangles
in graphs. A cool thing about these IPs is that the prover is super-efficient: P
runs the best-known algorithm to solve the problem, and then does a low-order
amount of extra work to prove the answer is correct. I don’t know of any other
techniques that achieve this super-efficiency with logarithmic proof length.

Second, I will re-prove the following important result of Goldwasser, Kalai,
and Rothblum (GKR): all problems solvable in logarithmic space have an IP
with a linear-time verifier, polynomial time prover, and polylogarithmic proof
length. As I’ll explain, this result is a direct consequence of the matrix-multiplication
IP—this is simpler than the original treatment by GKR, who derived the result
via a sophisticated IP for arithmetic circuit evaluation.

1 The Two Technical Facts Needed In This Post

To understand why the IPs in this post are sound against cheating provers, all
you need to know is that any two distinct univariate polynomials of degree at
most d can only agree on at most d inputs. Equivalently:

Polynomial Equality Checking Lemma. If p and q are distinct univariate
polynomials of degree at most d over a field F, then Pr[p(r) = q(r)] ≤ d/|F|,
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where the probability is over a randomly chosen element r ∈ F.

The other technical notion required in this post is multilinear extensions.
Here, a multivariate polynomial is said to be multilinear if it has degree at most
1 in each variable.

Multilinear Extension Lemma. Let f : {0, 1}n → F. Then there is a unique
multilinear polynomial f̃ over F such that f̃(x) = f(x) for all x ∈ {0, 1}n. f̃
is called the multilinear extension (MLE) of f . Given as input a list of all 2n

evaluations of f , and an arbitrary point r ∈ Fn, there is an algorithm that can
evaluate f̃(r) in O(2n) time.

2 The Sum-Check Protocol

Suppose we are given a v-variate polynomial g defined over a finite field F. The
purpose of the sum-check protocol is to compute the sum:

H :=
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

g(b1, . . . , bv). (1)

At first blush, summing up the evaluations of a polynomial over all Boolean
inputs may seem like a contrived task. But to the contrary, later sections of this
post will show that many natural problems can be directly cast as an instance
of Equation (1).

What does the verifier gain by using the sum-check protocol? For
presentation purposes, we assume in this section of the post that the verifier
has oracle access to g, i.e., the verifier can evaluate g(r1, . . . , rv) for any desired
vector (r1, . . . , rv) ∈ Fv with a single query to an oracle. (In applications of
the sum-check protocol, there will be no such oracle; rather, the polynomial g
will be derived from the input in some fashion). Let us further assume that
g has degree at most 2 in each variable, as this will be the case in all of the
applications in this post.

The verifier could clearly compute H via Equation (1) on her own with 2v

calls to the oracle, but we are thinking of 2v as an unacceptably large runtime
for the verifier. It turns out that the verifier can execute her part of the sum-
check protocol in O(1) time1 per round, and then at the very end of the protocol
make only a single call to the oracle. The protocol requires v rounds, one for
each variable of g, which means the verifier’s total runtime is

O(v + [the cost of one oracle query to g]).

This is much better than the 2v oracle queries requires to compute H unas-
sisted.2

1Throughout, we assume any addition or multiplication operation in F takes O(1) time.
2Again, in applications, there will be no oracle; g will be derived from the input in some

fashion, and V will have to evaluate g(r1, . . . , rv) at a single point (r1, . . . , rv) on her own.
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It also turns out that the prover in the sum-check protocol can be imple-
mented with just O(2v) calls to the oracle. This is only a constant factor more
than what is required simply to compute H without proving correctness.

Description of the Start of The Protocol. At the start of the first round,
the prover sends a degree-2 polynomial g1(X1), and claims that

g1(X1) =
∑

(x2,...,xv)∈{0,1}v−1

g(X1, x2, . . . , xv).

If g1 is as claimed, then H = g1(0) + g1(1). Note that g1 can be specified with 3
field elements, for example by sending the evaluation of g1 at each point in the
set {0, 1, 2}.
The Rest of the Round 1. Let

s1(X1) =
∑

(x2,...,xv)∈{0,1}v−1

g(X1, x2, . . . , xv)

be the polynomial that the prover claims g1 equals. The idea of the sum-
check protocol is that the verifier will probabilistically check this equality of
polynomials holds by picking a random field element r1 ∈ F, and confirming
that

g1(r1) = s1(r1). (2)

Clearly, if g1 is as claimed, then Equation (2) holds for all r1 ∈ F. Meanwhile,
if g1 6= s1, then the Polynomial Equality Checking Lemma tells us that with
probability at least 1 − 2/|F| over the verifier’s choice of r1, Equation (2) fails
to hold.

The remaining issue is the following: can the verifier efficiently compute both
g1(r1) and s1(r1), in order to check that Equation (2) holds? While the verifier
can evaluate g1(r1) in O(1) time given the description of g1 sent by P , evaluating
s1(r1) is not an easy task, as s1 is defined as a sum over 2v−1 evaluations of
g. Fortunately, Equation (2) expresses s1 as the sum of the evaluations of a
(v − 1)-variate polynomial over the Boolean hypercube, the polynomial being
g(r1, X2, . . . , Xv) that is defined over the variables X2, . . . , Xv. This is exactly
the type of expression that the sum-check protocol is designed to check. Hence,
rather than evaluating s1(r1) on her own, the verifier recursively applies the
sum-check protocol to evaluate s1(r1).

Recursive Description of Rounds 2, . . . , v. The protocol thus proceeds in
this recursive manner, with one round per recursive call. This means that in
round j, variable Xj gets bound to a random field element rj chosen by the
verifier. This process proceeds until round v, in which the prover is forced to
send a polynomial gv(Xv) claimed to equal sv := g(r1, . . . , rv−1, Xv). When the
verifier goes to check that gv(rv) = sv(rv), there is no need for further recursion:
the verifier can evaluate sv(rv) = g(r1, . . . , rv) with a single oracle query to g.

The soundness error of the sum-check protocol for quadratic polynomials g
is at most 2v/|F|. Throughout this post, we will think of F as large (say, of size
poly(2v)), which ensures that the soundness error is very small.
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3 IP for Matrix Multiplication (MatMult)

Given n×n input matrices A,B, let us denote the product matrix A·B by C. We
will need to interpret A, B, and C as functions mapping {0, 1}logn × {0, 1}logn

to F in the natural way.
That is, we will think of (i1, . . . , ilogn) ∈ {0, 1}logn as the binary represen-

tation of a number i between 1 and n (let us assume n is a power of 2 for
simplicity), and define:

A(i1, . . . , ilogn, j1, . . . , jlogn) to be the (i, j)’th entry of A.

Once we are viewing A, B, and C as functions mapping {0, 1}logn × {0, 1}logn

to F, it makes sense to talk about their multilinear extensions Ã, B̃, and C̃.

An IP for Evaluating C̃(r1, r2) for any (r1, r2) ∈ Flogn×Flogn. It is clean-
est to describe the protocol for MatMult as an IP for evaluating the multilinear
extension C̃ at any given point (r1, r2) ∈ Flogn × Flogn. As we will see, evalu-
ating C̃ at a single point (r1, r2) turns out to be sufficient for other application
problems such as triangle counting.3

Note that this IP is only interesting when r1, r2 ∈ Flogn \ {0, 1}logn. This
is because for inputs i, j ∈ {0, 1}logn, C̃(i, j) is just the (i, j)’th entry of the
product matrix C, and C(i, j) =

∑
k A(i, k) · B(k, j) can be computed directly

by the verifier in O(n) time. But if r1, r2 6∈ Flogn, then C̃(r1, r2) in fact depends
on every entry of C, and hence the verifier cannot compute C̃(r1, r2) on its own
without knowing the product matrix.

The Key Polynomial Identity. The protocol for computing C̃(r1, r2) ex-
ploits the following explicit representation of the polynomial C̃(x, y):

C̃(x, y) =
∑

b∈{0,1}log n

Ã(x, b) · B̃(b, y). (3)

Proof of Equation (3). The left and right hand sides of Equation (3) are both
multilinear polynomials in the coordinates of x and y. Since the MLE of C is
unique, we need only check that the left and right hand sides of Equation (3)
agree for all Boolean inputs. That is, we must check that for all Boolean vectors
i, j ∈ {0, 1}logn,

C(i, j) =
∑

k∈{0,1}log n

A(i, k) ·B(k, j).

But this is immediate from the definition of matrix multiplication.

3If the verifier wishes to learn the entire product matrix C, the prover can send a matrix D
claimed to equal C. The verifier can evaluate D̃ at a random input (r1, r2) ∈ Flogn×Flogn in
O(n2) time using the Multilinear Extension Lemma, and can use the IP of this section to check
that D̃(r1, r2) = C̃(r1, r2). If so, the Schwartz-Zippel lemma (a multivariate generalization
of the Polynomial Equality Checking Lemma) implies that it is safe for the verifier to believe
that the claimed answer D in fact equals the true product matrix C.
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With Equation 3 in hand, the interactive protocol is immediate: compute
C̃(r1, r2) by applying the sum-check protocol to the (log n)-variate polynomial
g(z) := Ã(r1, z) · B̃(z, r2).

Rounds and communication cost. Since g is a (log n)-variate polynomial
of degree 2 in each variable, the total communication is O(log n) field elements,
spread over log n rounds.

V ’s runtime. At end of sum-check, V must evaluate

g(r3) = Ã(r1, r3) · B̃(r3, r2).

To perform this evaluation, it suffices for V to evaluate Ã(r1, r3) and B̃(r3, r2).
Since V is given the matrices A and B as input, the Multilinear Extension
Lemma implies that both evaluations can be performed by the verifier in O(n2)
time, i.e., linear in the input size.

P ’s runtime. Once P computes the product matrix C, P can compute all of
its prescribed messages in the IP in O(n2) additional time (it is not trivial to
achieve this; see Section 8.2 of this paper for details). This means that P can
run the best-known algorithm to compute the product matrix C (which takes
much more than n2 time), and then do a low-order amount of extra work to
prove the answer is correct.

4 Counting Triangles Protocol

To define the problem, let G be an undirected graph on n vertices with edge
set E. Let A ∈ {0, 1}n×n be the adjacency matrix of G, i.e., Ai,j = 1 if and
only if (i, j) ∈ E. In the counting triangles problem, the input is the adjacency
matrix A, and the goal is to determine the number of vertex triples (i, j, k)
are all connected to each other, i.e., (i, j), (j, k), and (i, k) are all edges in E.
Equivalently, the goal is to compute the following quantity:

∆ :=
1

6

∑
i,j,k

Ai,j ·Aj,k ·Ai,k =
1

6

∑
i,j

(A2)i,j ·Ai,j . (4)

Here, the factor 1/6 comes in because the sum over unordered node triples
(i, j, k) counts each triangle 6 times, once for each permutation of i, j, and k.

For simplicity, we will focus on computing ∆′ := 6∆, since ∆ can clearly be
derived from ∆′ with a single division operation.

Let F be a finite field of size p ≥ n3, where p is a prime, and let us view all
entries of A as elements of F. Here, we are choosing p large enough so that ∆′ is
guaranteed to be in {0, 1, . . . , p}. This ensures that, if we associate elements of
F with integers in {0, 1, . . . , p} in the natural way, then ∆′ =

∑
i,j(A

2)i,j · Ai,j

even when all additions and multiplications are done in F rather than over the
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integers. Choosing a large field to work over has the added benefit of ensuring
good soundness error, as the soundness error of the sum-check protocol decreases
linearly with field size.

Define the functions f(x, y), g(x, y) : {0, 1}logn × {0, 1}logn → {0, 1} that
interprets x and y as the binary representations of some integers i and j between
1 and n, and outputs Ai,j and (A2)i,j respectively. Let f̃ and g̃ denote the
multilinear extensions of f and g over F.

Then ∆′ equals ∑
x,y∈{0,1}log n

g̃(x, y) · f̃(x, y).

This quantity can be computed by applying the sum-check protocol to the
quadratic polynomial g̃ · f̃ . At the end of this protocol, the verifier needs to
evaluate g̃(r1, r2) · f̃(r1, r2) for a randomly chosen input (r1, r2) ∈ Flogn×Flogn.
The verifier can evaluate f̃(r1, r2) unaided in O(n2) time using the Multilinear
Extension Lemma. While the verifier cannot evaluate g̃(r1, r2) without comput-
ing the matrix A2 (which is as hard as solving the counting triangles problem
on her own), evaluating g̃(r1, r2) is exactly the problem that the MatMult IP
of Section 3 was designed to solve (as A2 = A · A), so we simply invoke that
protocol to compute g̃(r1, r2).

Rounds and communication cost. The total communication is O(log n)
field elements, spread over O(log n) rounds.

V ’s runtime. V runs in O(n2) time, which is linear in the input size.

P ’s runtime. If P is given the squared adjacency matrix A2, P can compute
all the prescribed messages in the sum-check protocols in O(n2) time. The
fastest known algorithms for counting triangles involve squaring the adjacency
matrix A, which means that P can run the fastest known algorithm, and then
do only O(n2) extra work to prove the answer is correct.

Comparison to Freivalds’ Algorithm. In the 1970s, Freivalds gave a non-
interactive protocol for verifying matrix products: the prover in Freivalds’ pro-
tocol just sends the product matrix C, and the verifier picks a random vector
x ∈ Fn and checks that Cx = A · (Bx). One can apply Freivalds’ protocol in
place of the MatMult IP above to count triangles, but the communication cost
will be O(n2), instead of O(log n). This is the power of interaction: it allows
the verifier to force the prover to correctly materialize intermediate values in a
computation, without the need for the prover to explicitly send those values to
the verifier.
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5 Final Applications

5.1 An IP for Matrix Powers

Let A be an n×n matrix, and suppose a verifier wants to evaluate a single entry
of the powered matrix Ak for a large integer k (for concreteness, let’s say V is
interested in learning entry (Ak)n,n, and k and n are powers of 2). As we now
explain, the MatMult IP of Section 3 gives a way to do this, with O(log(k)·log(n))
rounds and communication, and a verifier that runs in O(n2 + log(k) log(n))
time.

Clearly we can express the matrix Ak as a product of smaller powers of A:

Ak = Ak/2 ·Ak/2. (5)

Hence, letting g` denote the multilinear extension of the matrix A`, we can try to
exploit Equation (5) by applying the MatMult IP to compute (Ak)n,n = gk(1,1).

But at the end of this MatMult IP, the verifier needs to evaluate gk/2 at two

points. The verifier can’t do this since she doesn’t know Ak/2.

Reducing two points to one. There are known interactive proof techniques
that enable a verifier to reduce evaluating a polynomial gk/2 at the two points
to evaluating gk/2 at a single point. We omit these details for brevity.

Recursion to the Rescue. After reducing two points to one, the verifier is
left with the task of evaluating gk/2 at a single input, say (r1, r2) ∈ Flogn ×
Flogn. Since gk/2 is the MLE of the matrix Ak/2, which can be decomposed as

Ak/4 ·Ak/4, the verifier can recursively apply the MatMult protocol to compute
gk/2(r1, r2). This runs into the same issues as before, namely that to run the
MatMult protocol, the verifier needs to evaluate gk/4 at two points, which can
in turn be reduced to the task of evaluating gk/4 at a single point. This can
again be handled recursively as above. After log k layers of recursion, there is
no need to recurse further since the verifier can evaluate g1 = Ã at any desired
input in O(n2) time using the Multilinear Extension Lemma.

5.2 An IP for Logarithmic Space Computations

Let M be a Turing Machine that, when run on an m-bit input, uses at most
s bits of space. Let A(x) be the adjacency matrix of its configuration graph
when M is run on input x ∈ {0, 1}m. Here, the configuration graph has as its
vertex set all of the possible states and memory configurations of the machine
M , with a directed edge from vertex i to vertex j if running M for one step
from configuration i on input x causes M to move to configuration j. Since M
uses s bits of space, there are O(2s) many vertices of the configuration graph.
This means that A(x) is an N × N matrix for some N = O(2s). Note that if
M never enters an infinite loop (i.e., never enters the same configuration twice),
then M must trivially run in time at most N .
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We can assume without loss of generality that M has a unique starting con-
figuration and a unique accepting configuration; say for concreteness that these
configurations correspond to vertices of the configuration graph with labels 1
and N . Then to determine whether M accepts input x, it is enough to deter-
mine if there is a length-N path from vertex 0 to vertex N in the configuration
graph of M . This is equivalent to determining the (1, N)’th entry of the matrix

(A(x))
N

.
This quantity can be computed with the matrix power protocol of the pre-

vious section, which uses O(s · logN) rounds and communication. At the end
of the protocol, the verifier does need to evaluate the MLE of the matrix A(x)
at a randomly chosen input. This may seem like it should take up to O(N2)
time, since A is a N × N matrix. However, the configuration matrix of any
Turing Machine is highly structured, owing to the fact that at any time step,
the machine only reads or writes to O(1) memory cells, and only moves its read
and write heads at most one cell to the left or right. This turns out to imply
that the verifier can evaluate the MLE of A in O(s ·m) time.

In total, the costs of the IP are as follows. The rounds and number of field
elements communicated is O(s logN), the verifier’s runtime is O(s logN +m ·s)
and the prover’s runtime is poly(N). If s = O(logm), then these three costs are
respectively O(log2 m), O(m logm), and poly(m). That is, the communication
cost is polylogarithmic in the input size, the verifier’s runtime is quasilinear,
and the prover’s runtime is polynomial.

By the way, if s = poly(m), then the verifier’s runtime in this IP is poly(m),
recovering the famous result of LFKN and Shamir that IP = PSPACE.

Parting Thoughts. One disappointing feature of this IP is that, if the run-
time of M is significantly less than N ≥ 2s, the prover will still take time at
least N , because the prover has to explicitly generate powers of the configu-
ration graph’s adjacency matrix. This is particularly problematic if the space
bound s is superlogarithmic in the input size m, since then 2s is not even a
polynomial in m. Effectively, the IP we just presented forces the prover to ex-
plore all possible configurations of M , even though when running M on input
x, the machine will only enter a tiny fraction of such configurations. A break-
through complexity-theory result of Reingold, Rothblum, and Rothblum gave
a very different IP that avoids this inefficiency for P (remarkably, their IP also
requires only constantly many rounds of interaction).
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